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From their earliest months, infants are deeply engaged 
in learning from others. Even newborns tend to prefer to 
look at faces with direct versus averted gaze (Farroni et al., 
2002) and young infants follow overt gaze shifts (Bruner, 
1975; Gredeback et al., 2010). As infants reach their first 
birthday, they also tend to follow (Yu & Smith, 2013, 2017) 
and imitate the gestures of their caregivers (e.g., pointing). 
Infants’ ability to process these social cues may provide 
strong scaffolding for early word learning. Longitudinal 
studies provide some evidence for this link: Children’s 
level of joint engagement with their mother at 9–12 months 
predicts both their receptive and productive vocabularies 
(Carpenter et al., 1998) and 10-month-olds who follow an 
adult’s gaze (in an experimental context) have larger vo-
cabularies at 18 months and throughout the second year 
of life (Brooks & Meltzoff, 2005, 2008). While the rela-
tionship between hand-following and language develop-
ment has been less well characterized, infants who follow 
their caregivers’ hands tend to be those who spend more 
time jointly attending to events with their caregivers (Yu 
& Smith, 2017) and caregivers tend to create referential 

clarity by holding objects for their infants to see (Suanda 
et al., 2019).

Relatively little work, however, has quantified how 
often infants see and use these kinds of social cues in 
naturalistic learning environments. By using head-
mounted cameras to record what infants see, research-
ers have begun to document the infant egocentric 
perspective (Yoshida & Smith, 2008) and to quantify 
the information—social and otherwise—available to 
infants as they learn. While head-mounted camera data 
do not provide explicit information about what infants 
are looking at (unlike head-mounted eye-trackers), some 
work suggests that infants orient their head toward what 
they are focusing on—putting those people or objects in 
view (Yoshida & Smith, 2008). Initial recordings using 
this technique during in-lab play sessions revealed a dif-
ferent view than many imagined: Instead of being domi-
nated by faces, the infant perspective contained close up 
views of primarily toys and hands (Franchak et al., 2011; 
Yoshida & Smith, 2008; Yu & Smith, 2017). Subsequent 
research has revealed that the infant view undergoes dra-
matic changes as infants grow. Recordings from home 
environments suggest that the viewpoints of very young 
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Abstract

How do postural developments affect infants’ access to social information? We 

recorded egocentric and third-person video while infants and their caregivers 

(N = 36, 8- to 16-month-olds, N = 19 females) participated in naturalistic play ses-

sions. We then validated the use of a neural network pose detection model to detect 

faces and hands in the infant view. We used this automated method to analyze our 

data and a prior egocentric video dataset (N = 17, 12-month-olds). Infants’ aver-

age posture and orientation with respect to their caregiver changed dramatically 

across this age range; both posture and orientation modulated access to social 

information. Together, these results confirm that infant’s ability to move and act 

on the world plays a significant role in shaping the social information in their view.
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infants—less than 4 months of age—do indeed contain 
persistent and frequent views of faces (Fausey et al., 2016; 
Jayaraman et al., 2017) but that the infant view tends to 
contain more and more hands as infants grow older.

Broadly, the field is in need of computational tools to 
reuse these rich video datasets and understand the gener-
alizability of findings across populations, tasks, and age-
ranges and to understand how changes in the infant view 
are influenced by other aspects of development. For ex-
ample, children’s evolving motoric abilities likely change 
how they participate with their caregivers in different 
kinds of play sessions (e.g., exploring novel environments 
vs. playing with novel objects) which in turn may shape the 
social cues that children see and use during learning. Yet 
while the field has assembled many head-mounted cam-
era datasets, conducting new analyses on these videos has 
remained prohibitively time-consuming due to a lack of 
computational tools for annotations. Instead, hundreds of 
hours of manual annotations have been required to ana-
lyze a fraction of the available frames for a given analysis. 
Thus, despite containing a wealth of information about 
the structure of parent–child interactions, these datasets 
have thus gone dramatically underused. As a result, un-
derstanding the nuanced relationship between the social 
information in the infant view and children’s motoric and 
linguistic development has remained challenging.

Indeed, developmental changes in the infant view are 
likely the downstream consequence of myriad factors, in-
cluding infants’ evolving locomotive abilities: an infant’s 
ability to sit, crawl, stand, or walk structures the way they 
interact with the things and people in their world. These mo-
toric developments have been thought of as gateways that 
open up entirely new phases of development (Iverson, 2010), 
causing a cascade of changes in an infant’s ability to interact 
with their world and the people in it (Karasik et al., 2014).

Thus, one idea is that infants’ changing locomotor abil-
ities could shape the social cues that infants see and seek 
out, in turn impacting their cognitive and linguistic abil-
ities. Some evidence supports this view: For example, in-
fants’ experience with sitting predicts their success at 3D 
object completion tasks (Soska et al., 2010) as well as their 
receptive vocabulary (Libertus & Violi, 2016), suggesting 
the importance of focused play sessions for language de-
velopment. Later, as children begin crawling (Adolph et al., 
1998)—or scooting or cruising (Patrick et al., 2012)—their 
view of the world changes as they are no longer constrained 
to the same spot that their caregivers last placed them in. 
Yet while crawlers can choose where to go and what they 
see to a much greater degree, they also appear to spend 
much of their time in a world populated by floors and 
knees; during spontaneous play, toddlers are more likely 
to look at the floor while crawling than while walking 
(Franchak et al., 2011), when they have full visual access to 
their environment and the people in it (Kretch et al., 2014).

On one theoretical view, it is primarily children’s 
ability to stand and walk that fundamentally changes 
their ability to access social information (e.g., facial 

expressions, gaze cues, pointing) relative to children who 
are still crawling and sitting, which could in turn allow in-
fants to learn words quicker and more efficiently (Walle, 
2016). Supporting this idea, walking versus crawling in-
fants tend to make different kinds of object-related bids 
for attention from their caregivers (Karasik et al., 2014), 
hear more action directed statements (e.g., “open it”; 
Karasik et al., 2014), and have higher receptive and pro-
ductive vocabularies (Walle & Campos, 2014). However, 
not all evidence supports this view: parental report data 
suggest no relationship between walking and the onset of 
language (Moore et al., 2019). Furthermore, using head-
mounted eye-tracking data from 1-year-olds, Franchak 
et al. (2018) found that infants’ in-the-moment posture 
also interacts with their caregivers’ posture to shape the 
social information in view (Franchak et al., 2018), high-
lighting the need to consider not only children’s motoric 
abilities but how caregivers adapt to them.

Recent innovations in computer vision hold promise 
for understanding the generality of these findings. By 
automating annotations of the infant view, we can go be-
yond limited sets of manual annotations to characterize 
the consistency and variability in the social information 
that children see during early learning. Over the past de-
cade, deep neural networks have become dramatically 
better at a wide range of visual tasks, including object 
classification (Simonyan & Zisserman, 2014), scene cate-
gorization (Zhou et al., 2017), and pose detection (Zhang 
et al., 2016), arguably facilitating our understanding of 
visual perception (Peterson et al., 2018; VanRullen, 2017) 
and improving computational neuroscience (Kietzmann 
et al., 2018). Yet as most models have been trained on 
photographs or videos taken from the adult perspective, 
it is unclear how easily these models can be applied to 
videos taken from the infant perspective. While some 
computer vision algorithms have indeed been adapted 
for egocentric vision (e.g., gaze predictions, Zhang et al., 
2017), very few have been adapted for egocentric video 
data from infants (Bambach et al., 2017).

Here, we make progress on understanding the social 
information in the changing infant view by adapting 
novel computational methods. We use a publicly avail-
able pose detection model (Cao et al., 2017; Zhang et al., 
2016) for the detection of faces and hands in infant ego-
centric video data, a similar approach to that used by 
Long et al. (2020). We compare the detection accuracy of 
this method with that of both older and more specialized 
models of face detection, demonstrating the usability 
of this off-the-shelf model for quantifying the faces and 
hands in the infant view in egocentric video datasets.

We then use these automated detections to examine 
how the social information in view changes with respect 
to infant’s age and real-time posture in two different 
egocentric video datasets. In Study 1, we use the cross-
sectional design of our dataset to examine the relative 
contributions of children’s age versus real-time posture 
on infants’ visual access to social information and use 



      |  3AUTOMATED DETECTION OF SOCIAL INFORMATION

transcriptions to explore how the availability of social 
cues changes relative to naming events (e.g., “Yes, you 
like the [ball!]”). Indeed, despite positing links between 
the social information in view and language develop-
ment, no work to date has directly examined how the 
availability of social information changes around naming 
events in naturalistic contexts. In Study 2, we apply this 
same automated method to Franchak et al. (2018), where 
1-year-olds wore head-mounted eye-tracking cameras 
during a play session and their in-the-moment posture 
was hand-annotated (https://nyu.datab​rary.org/volum​
e/135). Unlike in Study 1, infants and caregivers roamed a 
large, open playroom and explored different toys placed 
throughout. We analyze this second dataset with the goal 
of validating our automated method on a very different 
kind of video dataset, extending their primary findings 
originally obtained with a head-mounted eye-tracker. 
Across both datasets, we predicted that there would be 
differential access to social information based on chil-
dren’s postural developments: Crawling infants would 
see fewer faces/hands because they would primarily be 
looking at the ground, while walking toddlers would 
have access to a richer visual landscape with greater ac-
cess to the social information in their environment.

To preview our results, we find that infants’ changing 
locomotor abilities are a major factor that shape the sta-
tistics of the social visual environment, confirming and 
extending previous work. Thus, children’s social learning 
environment appears to change dramatically as children 
change in their ability to move on their own and interact 
with the world. These results are consistent with recent 
proposals emphasizing the child as an active learner (Xu, 
2019) whose evolving abilities change what they see and 
how they learn from their caregivers (Karasik et al., 2014).

STU DY 1

Method

We provide an annotated, open dataset for research-
ers to examine the effects of postural developments and 
naming behavior during naturalistic parent–child inter-
actions. Caregivers of 8-, 12-, and 16-month-olds were 
invited to participate in play sessions where they were 
provided with pairs of novel and familiar objects (e.g., a 
ball and a microfiber duster, called a “zem”) in a small 
playroom in a laboratory (approximately 10  ×  10 feet). 
Infants wore head-mounted cameras (see Head-mounted 
camera), and a tripod-mounted camera captured a 
third person view of the play session. Using these video 
data, infants’ posture and orientation to their caregiver 
were hand-coded and annotated for the entirety of the 
play session; this age-range spans the months when in-
fants typically transition from sitting to crawling to 
standing. All videos were transcribed, and MacArthur 
Communicative Development Inventories (CDIs) were 

collected for all children who participated for future 
research (but are not analyzed in this study). All mate-
rials have been made publicly available on Databrary 
for whom the parents provided sharing consent (29/36 
dyads) via https://nyu.datab​rary.org/volum​e/101.

Participants

Our final sample consisted of 36 infants and children, 
with 12 participants in three age groups: 8 months (6 F), 
12 months (7 F), and 16 months (6 F). Participants were 
recruited from the surrounding community via state 
birth records, had no documented disabilities, and were 
reported to hear at least 80% English at home. These 
demographics and exclusion rates are given in the table 
below (see Table 1). No other demographic information 
was collected from these participants.

To obtain this final sample, we tested 95 children, 
excluding 59 children for the following reasons: 20 for 
technical issues related to the headcam (e.g., failure to 
record, ran out of battery), 15 for failing to wear the 
headcam, 10 for fewer than 4 min of headcam footage, 
5 for having multiple adults present, 5 for missing CDI 
data, 2 for missing scene camera footage, 1 for fussiness, 
and 1 for sample symmetry. Technical issues related to 
the initial headcam model (MD-80) led us to switch to 
a different head-mounted camera during data collection 
(see Head-mounted camera). 16-month-olds tolerated 
the head-mounted camera less well than younger infants, 
leading to a higher exclusion rate in this age group. All 
inclusion decisions were made independent of the results 
of subsequent analyses.

Head-mounted camera

We used a head-mounted camera (“headcam”) that was 
constructed from a small camera attached to a soft elas-
tic headband.1 Initial participants wore an MD-80 cam-
era, which was then replaced by a Veho pro camera 
which had better battery life and a larger view angle. 

 1Detailed instructions for creating this headcam can be found at http://babie​
slear​ningl​angua​ge.blogs​pot.com/2013/10/how-to-make-babyc​am.html. 
However, we note that as these data were collected in 2011–2013 these camera 
models are relatively out of date.

TA B L E  1   Exclusion rates and summary demographics for the 
infants included in the study

Group N
% 
incl.

Avg. 
age

Min 
age

Max 
age

Avg. 
video 
length

Num 
female

8-month-olds 12 0.46 8.71 7.50 9.60 14.41 6

12-month-olds 12 0.40 12.62 11.40 13.70 12.71 7

16-month-olds 12 0.31 16.29 15.20 17.80 15.10 6

https://nyu.databrary.org/volume/135
https://nyu.databrary.org/volume/135
https://nyu.databrary.org/volume/101
http://babieslearninglanguage.blogspot.com/2013/10/how-to-make-babycam.html
http://babieslearninglanguage.blogspot.com/2013/10/how-to-make-babycam.html
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The view angle of the MD-80 camera was 32° horizontal 
by 24° vertical, and we attached a fish-eye lens to the 
camera to increase the view angle to 64° horizontal by 
46° vertical. The view angle of the Veho pro camera was 
wider, 47° horizontal by 36° vertical. Videos captured by 
MD-80/Veho cameras were 640 × 480/720 × 480 pixels, 
respectively, and both cameras had a frame rate of ~30 
frames per second. To ensure that detections across 
these different cameras were more comparable, we ex-
cluded detections from the outer edges of the videos 
taken with the MD-80 cameras based on these view 
angle differences in our main analyses (i.e., excluding 
top/bottom 13% of the frames, and left/right 10% of the 
frames).

However, the vertical field of view of the cameras was 
still considerably reduced compared to the infants’ field 
of view, which spans around 100°–120° in the vertical di-
mension by 6–7 months of age (Cummings et al., 1988; 
Mayer et al., 1988). As we were primarily interested in 
the presence of faces in the child’s field of view, we chose 
to orient the camera upwards to capture the entirety of 
the child’s upper visual field where the child is likely to 
see adult faces, understanding that this decision limited 
our ability to detect hands (especially those of the child, 
which are typically found at the bottom of the visual 
field). We note that these limitations regarding field of 
view and camera angle affect all studies to date using 
this method, not only our own; future innovations in 
lightweight, wearable cameras may alleviate these field-
of-view limitations.

Procedure

All parents signed consent documents while children 
were fitted with the headcam. If the child was unin-
terested in wearing the headcam or tried to take it off, 
the experimenter presented engaging toys to try to 
draw the child’s focus away from the headcam. When 
the child was comfortable wearing the headcam, the 
child and caregiver were shown to a playroom for the 
free-play session. Parents were shown a box containing 
three pairs of familiar and novel objects. These pairs 
consisted of a ball paired with a microfiber duster 
(a “zem”), a toy car paired with a cheese grater (a 
“manu”), and a brush paired with a back massager (a 
“tima”). Parents were instructed to play with the object 
pairs with their child one at a time, “as they typically 
would.”

All parents confirmed that their child had not previ-
ously seen the novel toys and were instructed to use the 
novel labels to refer to the toys. The experimenter then 
left the playroom for approximately 15–20 min, during 
which a tripod-mounted camera in the corner of the 
room recorded the session and the headcam captured 
video from the child’s perspective.

Data processing and annotations

Headcam videos were trimmed such that they excluded 
the instruction phase when the experimenter was in the 
room and were automatically synchronized with the 
tripod-mounted videos using FinalCut Pro Software. 
These sessions yielded 507 min (almost a million frames) 
of video, with an average video length of 14.07  min 
(min = 4.53, max = 19.35).

Posture and caregiver orientation annotations
We created custom annotations to describe the child’s 
physical posture (i.e., standing) and the orientation of the 
caregiver relative to the child (e.g., far away). The child’s 
posture was categorized as being carried, prone (crawl-
ing or lying), sitting, or standing. The caregiver’s orienta-
tion was characterized as being close, far, or behind the 
child (independent of distance). “Close” to the caregiver 
was defined as being within the caregiver’s reach in any 
direction; for the first two annotations (close/far from the 
child), the caregiver could either be to the front or side of 
the child. When children were sitting in their caregiver’s 
lap, this was characterized as the caregiver being “be-
hind” with the child sitting (instead of the child being car-
ried); coding instructions accompany the repository for 
this dataset. All annotations were made by trained coders 
using the OpenSHAPA/Datavyu software (Adolph et al., 
2012). Times when the child was out of view of the tripod 
camera were marked as uncodable and were excluded 
from these annotations; similarly, times when the child 
was being carried or the caregivers were out of the frame 
were marked as uncodable for caregiver orientation. On 
average, posture or orientation was uncodable from 1 to 
2 min of data in each child (seconds excluded from analysis 
for posture, M = 105 s, SD = 234 s; orientation; M = 102 s, 
SD = 181 s), and these rates did not vary substantially with 
the age of the child. To assess the reliability of these anno-
tations, a second coder annotated videos from five differ-
ent children to calculate Cohen’s kappa (posture, κ = .76; 
caregiver orientation, κ = .65).

Naming event annotations
One coder listened to all of the audio from the play ses-
sions and marked the exact timestamps whenever one of 
the novel or familiar objects was named in any instance 
(e.g., “Look at the [ball]”, “Can you say [zem]?”); a sec-
ond coder listened to the majority of the play sessions 
(N = 23 sessions) and also annotated all naming events. 
To assess reliability, we calculated the proportion of 
naming events detected by the first coder that were also 
annotated by the second coder within a sliding window. 
We found that 82.1% of naming events were detected 
within a 4 s window (±2 s), and 70.9% of naming events 
were detected within a 2  s window (±1  s). We also ob-
tained full text transcriptions of the entire play sessions 
(with time stamps marking 10  s intervals). While these 
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full transcriptions are not used in the present analyses, 
they have been made available for future research.

Face and hand detection

We evaluated three automated detection systems for the 
ability to measure infants’ visual access to faces. The 
first of these is the most commonly used and widely 
available pre-neural network face detection algorithm: 
Viola-Jones (Viola & Jones, 2004). We used this algo-
rithm as a benchmark for performance, as while it can 
achieve impressive accuracy in some situations, it is no-
toriously bad at dealing with occluded faces (Scheirer 
et al., 2014). We next tested the performance of two face 
detectors that both made use of relatively recently devel-
oped Convolutional Neural Networks (CNNs) to extract 
face information. The first algorithm was specifically 
optimized for face detection, and the second algorithm 
was optimized to extract pose information of all the in-
dividuals in an image, operationalized as information 
about the position of 18 different body parts. For this 
second algorithm (OpenPose; Cao et al., 2017), we used 
the agent’s nose (one of the body keypoints detected) to 
operationalize the presence of faces, as any half of a face 
necessarily contains a nose.

The OpenPose detector also provided us with the 
location of an agent’s wrists, which we used as a proxy 
for hands for two reasons. First, as we did not capture 
children’s entire visual field, the presence of a wrist is 
likely often indicative of the presence of a hand within 
the field of view. Second, hands are often occluded by 
objects when caregivers are interacting with children, yet 
still visually accessible by the child and part of their joint 
interaction.

Algorithms
Viola Jones, the first face detection system, made use of 
a series of Haar feature-based cascade classifiers (Viola 
& Jones, 2004) applied to each individual frame. The 
second algorithm (based on work by Zhang et al., 2016) 
uses multi-task cascaded convolutional neural networks 
(MTCNNs) for joint face detection and alignment, built 
to perform well in real-world environments where vary-
ing illuminations and occlusions are present. We used a 
Tensorflow implementation of this algorithm available 
at https://github.com/david​sandb​erg/facenet.

The CNN-based pose detector (OpenPose; Cao et al., 
2017; Simon et al., 2017; Wei et al., 2016) provided the 
locations of 18 body parts (ears, nose, wrists, etc.) and 
is available at https://github.com/CMU-Perce​ptual​
-Compu​ting-Lab/openpose. The system uses a convo-
lutional neural network for initial anatomical detection 
and subsequently applies part affinity fields for part as-
sociation, producing a series of body part candidates. 
The candidates are then matched to a single individual 

and finally assembled into a pose; here, we only made 
use of the body parts relevant to the face and hands (nose 
and wrists), though the entire set of keypoints is publicly 
available. Each keypoint was accompanied by a confi-
dence score made by the detector.

Detector evaluation
To evaluate face detector performance, we hand-
labeled a “gold set” of frames extracted from the video 
dataset. To account for the relatively rare appearance 
of faces in the dataset, we hand-labeled two types of 
samples: a sample containing a high density of faces 
(half reported by MTCNN, half by OpenPose) and a 
random sample from the remaining frames. Each sam-
ple was comprised of an equal number of frames taken 
from each child’s video, and totaled 1008 frames. For 
wrist detections, the “gold set” was constructed in the 
same manner, except frames with a high density of 
wrists came only from detections made by OpenPose 
(504 frames total). Faces were classified as present if 
at least half of the face was showing; wrists were clas-
sified as present if any part of the wrist was showing. 
Two authors labeled the frames independently and re-
solved disagreements on a case-by-case basis. Precision 
(hits/hits + false alarms), recall (hits/hits + misses), and 
F-score (harmonic mean of precision and recall) were 
calculated for all detectors.

Results

First, we report the accuracy of the automated detectors, 
as assessed by comparison to hand-labeled frames from 
the free-play video dataset described above. We then 
apply one of these automated detectors (OpenPose) to 
the entirety of this video dataset, and use these outputs to 
examine how postural developments influence children’s 
visual access to faces and hands from 8 to 16 months of 
age. We further use the detections to explore how access 
to these social cues changes during naming events (e.g., 
do you see the [zem]?). Our main analyses were not pre-
registered though they were driven by the hypotheses 
and findings in Frank (2012) and Franchak et al. (2018). 
In contrast, we did not have strong predictions regarding 
how access to social cues would change during naming, 
thus we consider these analyses completely exploratory. 
All data and code for all analyses are available at https://
osf.i27hy/.

Accuracy of automated detections

For face detection, we found that both OpenPose and 
MTCNN dramatically outperformed ViolaJones (our 
baseline model) especially with respect to the random 
sample, where ViolaJones missed many faces that were 

https://github.com/davidsandberg/facenet
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://github.com/CMU-Perceptual-Computing-Lab/openpose
https://osf.io/d27hy/
https://osf.io/d27hy/


6  |      LONG et al.

in view (see Table 2). When considering only the compos-
ite F-score across all frames, MTCNN slightly outper-
formed OpenPose (0.89 MTCNN vs. 0.83 OpenPose), and 
MTCNN and OpenPose performed comparably with the 
random sample. Generally, MTCNN exhibited higher 
precision, whereas OpenPose exhibited higher recall, 
and these differences were most pronounced on the ran-
domly sampled frames. In other words, while OpenPose 
generated slightly more false positives than MTCNN, 
MTCNN missed several faces that were accurately de-
tected by OpenPose. When we restricted our analysis to 
high-confidence detections from OpenPose (>0.5 confi-
dence; default threshold for visualization), we found very 
high precision (P = .97), but much lower recall (R = .64) 
and thus overall lower performance (F = .77), indicating 

that these low-confidence detections often indexed actual 
faces that were in the infant view. Figure 1 shows an ex-
ample of successful detections from OpenPose in each age 
group, and Figure 2 shows examples of missed faces and 
hands as well as false-positive pose detections for context.

We next assessed the viability of OpenPose as a hand 
detector. Despite the fact that hand detection is a more 
computationally challenging problem (Bambach et al., 
2015), and the fact that we used wrist keypoints as a 
proxy for hands, OpenPose performed moderately well 
as a hand detector (F  =  .73). OpenPose achieved rela-
tively high precision—generating relatively few false 
positives—but showed low recall on the randomly sam-
pled frames (see Table 2). As with face detections, when 
we restricted our analysis to high-confidence detections, 
we found much higher precision (P  =  .95), but much 
lower recall (R = .36) and thus lower overall performance 
(F = .52).

Thus, one major advantage of OpenPose relative to 
specialized face detectors, such as MTCNN, is that it al-
lows the analysis of both the faces and hands in the infant 
view with the outputs of only one algorithm. Analyzing 
the results of all detections (regardless of confidence) 
yielded reasonably accurate results. Going forward, we 
analyze face and wrist detections using all detections 
from OpenPose, with the caveat that we are likely under-
estimating the proportion of hands in the dataset given 
the lower recall for hand detections.

Developmental changes in infant posture and 
caregiver orientation

Consistent with previous literature (Thurman & 
Corbetta, 2019), the proportion of time infants spent 
sitting decreased with age, and the proportion of time 
infants spent standing increased with infants’ age. As 
children got older, their locomotor abilities allowed them 
to become more independent. Both 8- and 12-month-olds 
spent relatively equivalent amounts of time lying/

TA B L E  2   Detector performance for faces/wrists in high density 
samples (where proportion of targets detected was high) and random 
samples (where frames were randomly selected). P, R, and F denote 
precision, recall, and F-score, respectively. “Strict” denotes when 
only high confidence detections are considered

Algorithm Sample type P R F

MTCNN-Faces High density .89 .92 .90

MTCNN-Faces Random .94 .62 .75

OpenPose-Faces High density .78 .93 .84

OpenPose-Faces Random .72 .80 .76

OpenPose-Faces-
Strict

High density .97 .65 .78

OpenPose-Faces-
Strict

Random .97 .62 .76

ViolaJones-Faces High density .96 .44 .60

ViolaJones-Faces Random .44 .38 .41

OpenPose-Wrists High density .66 .96 .78

OpenPose-Wrists Random .88 .29 .43

OpenPose-
Wrists-Strict

High density .95 .44 .60

OpenPose-
Wrists-Strict

Random 1.00 .10 .18

F I G U R E  1   Example detections made by OpenPose from children in each age group

8-month-olds 16-month-olds12-month-olds
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crawling (i.e., “prone”) which was markedly decreased 
in the 16-month-olds, who spent most of their time sit-
ting or standing (see Figure 3). We also observed changes 
in infants’ orientation relative to their caregivers: The 
8-month-olds spent more time with their caregiver be-
hind them supporting their sitting positions than did 
children at other ages (see Figure 4). However, we also 
saw considerable variability across children: Some in-
fants spent almost their entire time sitting at a close dis-
tance from their caregiver, whereas others showed more 
considerable variability (see Figure 4).

Changes in access to faces and hands

First, we examined the proportion of face and hand de-
tections as a function of infants’ age without considering 
their posture (see Figure 5). While faces tended to be in 
the field-of-view overall more often than hands, infants’ 

F I G U R E  2   Example failed detections from OpenPose, showing 
both false negatives (top panel, missed face and missed hands) as well 
as false positives (bottom panel, erroneous “poses” were detected on 
the corner tripod and the child’s feet)

False positives

False negatives (misses)

F I G U R E  3   Proportion of time spent by each infant in different postures and orientations relative to their caregivers; times where posture 
was not codable are omitted for visualization purposes. Symbol size reflects the length of the time each infant spent in each position. Trend 
lines and error bars are drawn from generalized linear models fit to the data in each plot, weighted by the amount of time infants spent in each 
position
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head-mounted cameras were angled slightly upward to 
capture the presence of faces, and hand detections suf-
fered from somewhat lower recall than face detections. 
We thus only considered differences in the relative pro-
portion of faces or hands in view as a function of age, 
posture, and orientation, rather than comparing the two 
proportions directly. Overall, we did not observe strong 
age-related trends from 8 to 16  months of age; if any-
thing, face detections showed a slight U-shaped pattern, 
with 12-month-olds having slightly fewer faces in their 
visual field than 8- or 16-month-olds.

In contrast, infants’ locomotor developments had a 
major effect on the faces and hands that were in the field 
of view (see Figure 6). Two generalized linear mixed-
effect models were used to predict the proportion of 
faces and hands in view, with orientation, posture, their 
interaction, and scaled participant’s age as fixed effects, 
and with random slopes for infants’ orientation and pos-
ture (see all coefficients in Tables 3 and 4; model details 
in Appendix). In particular, the interaction between 

infants’ posture and their caregiver’s orientation had the 
most dramatic effect on the social information in view. 
When caregivers were behind their infants, supporting 
their infant’s sitting or standing positions, infants saw 
fewer faces. When caregivers were relatively close to 
their infants, infants who were sitting or standing had 
more faces in view (Face detections; infant sitting and 
caregiver close, b  =  0.90, SE  =  .07, Z  =  13.75, p  <  .001; 
infant standing and caregiver close, b = 1.23, SE =  .08, 
Z = 15.41, p <  .001) than infants who were lying down/
crawling (i.e., prone). When caregivers were far away 
from their infants, face detections were similarly higher 
(Face detections; infant sitting and caregiver far, b = 0.62, 
SE = .07, Z = 9.10, p < .001; infant standing and caregiver 
far, b = 1.23, SE = .09, Z = 14.40, p < .001). Infants’ age 
was not a significant predictor in accounting for the faces 
in view (Face detections; Age (scaled), b = 0.11, SE = .11, 
Z = 1.05, p = .293).

We found a similar pattern of results for wrist de-
tections, even though there were fewer wrist detections 
overall in the dataset. Infants saw fewer wrists when 
caregivers were behind their infants, supporting their 
infants’ sitting or standing positions versus when care-
givers were relatively closer to their infants (Hand de-
tections; infant sitting and caregiver close, b  =  0.27, 
SE =  .08, Z =  3.29, p =  .001; infant standing and care-
giver close, b = 0.09, SE =  .10, Z = 0.83, p =  .409) than 
infants who were lying down/crawling (i.e., prone). Wrist 
detections were highest when caregivers were far away 
from their infants and those infants were standing (Wrist 
detections; infant standing and caregiver far, b  =  1.56, 
SE = .11, Z = 14.15, p < .001). As with faces, age was not 
a significant predictor in these models (Wrist detections; 
Age (scaled), b = 0.18, SE = .11, Z = 1.64, p = .10).

We directly examined the contributions of posture 
and orientation versus age by fitting a reduced version 
of the full model (Nakagawa & Schielzeth, 2013) without 

F I G U R E  4   Proportion of time spent by each infant in different postures and orientations relative to their caregivers (CG); times when 
infant was carried or when posture/orientation were not codable are omitted for visualization purposes
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F I G U R E  5   Proportion of faces (left) and wrists (right) detected 
by the OpenPose model as a function of each child’s age in months. 
Larger dots indicate children who had longer play sessions and 
thus for whom there was more data
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their fixed effects (both models were run with the maxi-
mal random effects structure) and comparing model fits 
for each of these. The fixed effects in a model with only 
the age of the participants accounted for relatively little 
variance in the proportion of faces (marginal R2 = .031) 

or hands in view (marginal R2  =  .029). However, when 
adding infants’ posture and orientation to their care-
giver to the model (and their interaction), the marginal 
R2 were higher for both faces (marginal R2  =  .26) and 
wrists (marginal R2 = .28). Overall, these results suggest 

F I G U R E  6   Proportion of face/wrist detections by children’s age, their posture, and their caregiver’s orientation. Data points are scaled by 
the amount of time spent in each orientation/posture combination; times when posture/orientation annotations were unavailable or the infant 
was carried are not plotted. Error bars represent 95% bootstrapped confidence intervals
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TA B L E  3   Model coefficients from a generalized linear mixed 
model predicting the proportion of faces seen by infants

Estimate SE z value Pr(>|z|)

Intercept −3.37 .20 −17.02 0.00

Sit −0.01 .18 −0.08 0.94

Stand −0.29 .21 −1.42 0.16

Close 0.03 .18 0.15 0.88

Far 0.52 .25 2.04 0.04

Camera model 0.42 .22 1.90 0.06

Age (scaled) 0.11 .11 1.05 0.29

Sit × close 0.90 .07 13.75 0.00

Stand × close 1.23 .08 15.41 0.00

Sit × far 0.62 .07 9.10 0.00

Stand × far 1.23 .09 14.40 0.00

TA B L E  4   Model coefficients from a generalized linear mixed 
model predicting the proportion of wrists seen by infants

Estimate SE z value Pr(>|z|)

Intercept −4.33 .20 −21.79 0.00

Sit 0.62 .18 3.37 0.00

Stand 0.81 .31 2.56 0.01

Close 0.37 .20 1.87 0.06

Far 0.01 .27 0.05 0.96

Camera model 0.49 .22 2.24 0.02

Age (scaled) 0.18 .11 1.64 0.10

Sit × close 0.27 .08 3.29 0.00

Stand × close 0.52 .09 6.02 0.00

Sit × far 0.09 .10 0.83 0.41

Stand × far 1.56 .11 14.15 0.00
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that infants’ visual access to social information is largely 
modulated by their posture and orientation to their care-
giver, which is in turn a function of their general locomo-
tor development.

Social information during naming events

Our play session was designed to provide parents with 
opportunities to label objects—both familiar and 
novel—such that we could examine whether children 
saw different kinds of social information around naming 
events. In a set of exploratory analyses, we thus analyzed 
how face and hand detections changed during object 
naming events relative to baseline. We analyzed a 4s win-
dow (±2 s) each time a caregiver uttered a name for one of 
the objects (e.g., “Look at the [zem]!”); this time window 
was chosen in keeping with previous work suggesting 
that parents attend to their target referents during this 
time range (Trueswell et al., 2016). Every utterance of 
one of the objects (e.g., “ball”) was counted as a “naming 
event”; timestamps of the beginning of each word were 
hand-annotated and synchronized with the frame-by-
frame detections.

To assess whether there were differences in the social 
information in view during naming events, we first cal-
culated the proportion of detections that were in view 
during this 4 second window, and averaged across nam-
ing events for each subject as a function of whether the 
named object was a novel or a familiar object; this was 
then then compared to the baseline proportion of faces 
in view for each subject in linear mixed-effect models, 
with random effects of subjects and fixed effects of 
(scaled) age.

Face detections were not higher around these novel 
naming events relative to baseline, with similar ef-
fects across age groups (see Figure 7; 8-month-olds, 
Mfam - baseline  =  0.01, 12-month-olds, Mnov - baseline  =  0.04, 
16-month-olds Mnov - baseline  =  0.02) nor during famil-
iar naming events versus baseline (8-month-olds, 
Mfam - baseline  <  0.01, 12-month-olds, Mfam - baseline  <  0.01, 
16-month-olds Mfam - baseline  =  0.01). Conversely, wrist 
detections were higher during both familiar naming 
events (see Figure 7; 8-month-olds, Mfam - baseline  =  0.03, 
12-month-olds, Mfam - baseline  =  0.04, 16-month-olds 
Mfam - baseline  =  0.06) and novel naming events rela-
tive to baseline across all age groups (8-month-olds, 
Mnov - baseline  =  0.06, 12-month-olds, Mnov - baseline  =  0.07, 
16-month-olds Mnov - baseline  =  0.07). These results were 
confirmed by a linear mixed-effect model with scaled 
aged as a fixed effect and random intercepts for each 
subject (Wrist detections; familiar objects vs. baseline, 
b  =  0.05, SE  =  .01, t  =  3.76, p  <  .001; Novel objects vs. 
baseline, b = 0.06, SE = .01, t = 5.01, p < .001).

Overall, these exploratory results suggest that chil-
dren may tend to see more hands around naming events. 
This finding is consistent with the possibility that care-
givers may change how they interact with their infant 
when presenting them with objects (Gogate et al., 2000, 
2006; Suanda et al., 2019) and that hands could play 
a key role in guiding infants’ attention during dyadic 
interactions (Yu & Smith, 2017). For example, care-
givers may tend to simultaneously name objects when 
demonstrating their affordances or simply when point-
ing to them. In turn, infants may be sensitive to these 
naming events and orient their attention toward their 
caregiver, consistent with other accounts positing in-
fants’ sensitivity to social cues in early word learning 

F I G U R E  7   Proportion of face/wrist detections during naming events (±2 s around label) for familiar and novel objects; these rates are 
put into context relative to baseline. Error bars represent 95% bootstrapped confidence intervals. Gray lines connect points from individual 
subjects
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environments (Yurovsky, 2018; Yurovsky & Frank, 
2017).

STU DY 2

In Study 1, we found that infants’ in-the-moment pos-
ture changed with their age, as did their orientation rela-
tive their caregiver. In a related study with 1-year-olds, 
Franchak et al. (2018) used head-mounted eye-trackers and 
found that infants’ in-the-moment posture changed the 
proportion of time infants spent looking at faces. Here, we 
sought to extend their findings with our automated meth-
odology (OpenPose detections) using the footage from 
the scene cameras of their head-mounted eye-trackers 
(hosted on Databrary; Simon et al., 2015). We had two 
goals. First, we sought to validate our novel method, 
which could fail to generalize to scenes from these more 
complex environments, where detecting faces and hands 
could arguably be a much harder task. Second, we sought 
to replicate the effects of infants’ in-the-moment posture 
on differences in visual access to hands in an independ-
ent dataset; indeed, while Franchak et al., 2018 found that 
infants’ in-the-moment posture modulated the degree to 
which infants looked at faces, they did not directly assess 
whether it modulated the degree to which faces and hands 
were present in the infant field of view.

Method

Participants

With the aid of Franchak et al. (2018), we obtained 
the scene camera footage from the head-mounted eye-
trackers for the 17 one-year-old infants (range 11.8–
12.4  months) who participated. As noted in Franchak 
et al. (2018), families were recruited from maternity 
wards of local hospitals in the New York City metropoli-
tan area and were predominantly white and middle class.

Head-mounted camera

The view angle of the two head-mounted cameras used 
in these two studies were relatively similar (52.2° hori-
zontal by 42.2° in Franchak et al. (2018), 47° horizon-
tal by 36° vertical in Study 1). However, in Study 2 the 
camera was situated above the right eye, just slightly off 
center, whereas in Study 1 the camera was situated in the 
middle of their forehead and oriented slightly upwards.

Procedure

The play environment that infants were immersed in with 
their caregivers (and experimenters) was much larger and 

more varied than the play room used in Study 1, contain-
ing multiple structures and toys in different parts of the 
room for infants to climb, explore, and interact with, and 
infants were allowed to freely wander the room. In con-
trast, the playroom used in Study 1 was relatively small 
(approximately 10 ×  10 feet) and was setup for focused 
play on a mat with the pairs of novel and familiar ob-
jects. In addition, multiple people were present during 
the play session in Study 2—including their caregiver 
and two experimenters—whereas in Study 1 the experi-
menters left the room during the play session.

Video annotations

The first 5 min of each of the videos were coded for the 
infants’ posture (upright, prone, or sitting) by trained 
coders in Franchak et al. (2018). These frame-by-frame 
posture annotations were synced with the outputs of the 
same automated annotations used in Study 1.

Results

Differences between eye-tracking versus 
automated detections

First, we compared the overall proportion of frames in 
which infants foveated faces as assessed by the head-
mounted eye-tracker in Franchak et al. (2018) versus the 
proportion of frames with faces detected by OpenPose. 
We expected some differences, as (1) head-mounted 
eye-trackers may underestimate the proportion of faces 
attended due to calibration issues, and (2) OpenPose 
may detect faces that are in view for infants but that in-
fants may not be foveating. Across the entire session in 
Franchak et al. (2018), infants looked at faces on 4.7% 
of frames. When we used all detections from OpenPose, 
we found a much higher proportion of faces—21.80%. 
When we restricted our results to only high-confidence 
detections, we found 6.11% of frames with faces, closer 
to the original values reported by Franchak et al. (2018). 
However, the above analyses on the accuracy of this 
method suggest that high-confidence detections dra-
matically underestimate the number of faces in view. 
Thus, OpenPose is likely to overestimate the proportion 
of faces that are actually foveated, while head-mounted 
eye-trackers may underestimate the proportion of faces 
that infants could be attending to.

Replication and extension using 
automated detections

Despite these differences, we found convergence between 
our two methodologies, extending the results of Study 
1 and the main results from Franchak et al. (2018), and 
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finding that the proportion of faces detected was greater 
when infants were sitting or standing versus prone (see 
Figure 8). We found this result regardless of whether 
we used all detections (proportion of frames with face 
detections; Prone: M = 0.13, Sitting: M = 0.20, Upright: 
M = 0.22) or restricted our analyses to high-confidence 
detections (proportion of frames with high-confidence 
face detections; Prone: M  =  0.03, Sitting: M  =  0.06, 
Upright: M = 0.05). These results were confirmed in gen-
eralized linear-mixed models, with random intercepts 
for each subjects and infants’ posture as a fixed effect 
(Sitting vs. Prone, b = 0.34, SE = .02, Z = 23.37, p < .001; 
Upright vs. Prone, b = 0.38, SE = .02, Z = 24.01, p < .001).

We also found that infants’ in-the-moment posture 
modulated the proportion of hands that were in view 
(i.e., wrist detections), though these were not originally 
analyzed by Franchak et al. (2018; see Figure 8, the pro-
portion of frames with wrist detections; Prone: M = 0.15; 
Sitting: M = 0.21; Upright: M = 0.22). These results were 
confirmed in generalized linear-mixed models with the 
same model structure as with faces (Sitting vs. Prone, 
b = 0.27, SE = .01, Z = 19.09, p < .001. Upright vs. prone, 
b = 0.30, SE = .02, Z = 19.73, p < .001).

Overall, these analyses extend and validate previous 
work, replicating the results in Study 1 that infants’ in-
the-moment posture modulated the proportion of hands 
in view, and suggesting that posture is a major factor that 
structures infants’ access to visual information broadly 
construed.

DISCUSSION

What social cues do infants see as they learn language, 
and how does infants’ access to these cues change as 
they grow and start to locomote themselves? We exam-
ined this question using video data from head-mounted 
cameras from two datasets of naturalistic parent–child 

interactions: a cross-sectional database of play ses-
sions from 8- to 16-month-olds with sets of novel and 
familiar toys, and a database of head-mounted camera 
videos from 1-year-olds who explored a large play area 
(Franchak et al., 2018).

To analyze these datasets, we developed a novel 
method using a pose detection model to automate the 
annotation of the social information in the infant view, 
here operationalized as the presence of the faces and 
hands of their caregiver (these annotations were then 
synced with manual annotations of infants’ in-the-
moment posture from third-person videos). Despite 
being trained on the adult perspective, the pose de-
tector we used (OpenPose, Cao et al., 2017) was able 
to generalize relatively well to the infant viewpoint, 
achieving comparable precision and accuracy as a 
face detector relative to a state-of-the-art model opti-
mized specifically for detecting faces in natural scenes 
(Zhang et al., 2016). While OpenPose had relatively low 
recall as a hand detector—missing some hands that 
were in the infant view—it made comparable rates of 
false alarms. In both cases, we found that overall per-
formance was maximized when all detections were in-
cluded, regardless of their confidence, suggesting that 
some low-confidence face and hand detections still 
index actual faces and hands that were seen by infants.

Thus, while imperfect, we suggest that OpenPose can 
be applied to infant egocentric videos for the extraction of 
the social information in the infant viewpoint, reducing 
the burden of manual annotations and promoting the re-
usability of rich video datasets for further analyses. The 
use of this automated methodology allowed us to easily 
annotate the entirety of our dataset—additionally ana-
lyzing the social information around naming events—
and to re-analyze the data from Franchak et al. (2018), 
replicating our findings in a very different kind of play 
session. Furthermore, future work may be able to fine-
tune pose detectors for even better accuracy, leveraging 

F I G U R E  8   Proportion of face/wrist detections for 12-month-olds in Franchak et al. (2018) as a function of children’s in-the-moment 
posture. Error bars represent 95% bootstrapped confidence intervals
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human annotations of the faces and hands that infants 
see to adapt models for the infant view.

Nevertheless, it is important to note that the use of 
automated methods does come with some drawbacks. 
While using OpenPose does allow the analysis of much 
more data, it is possible that these coarser detections may 
obscure fine-grained differences that may only be seen 
with careful, manual annotations or the use of head-
mounted eye-trackers. In addition, researchers often 
gain insight into the phenomena that they are studying 
by carefully annotating these kinds of data, leading to 
new intuitions or ideas for future research. For these 
reasons, going forward we suggest that these automated 
methods continue to be complemented and validated by 
manual annotations on a portion of the relevant datasets 
they are applied to.

Broadly, our results using automated annotations repli-
cate and extend previous work, first by showing systematic 
changes in infants’ in-the-moment posture and their ori-
entation relative to their caregivers (Adolph & Franchak, 
2017); older children spent more time standing and less 
time sitting, and older infants’ caregivers spent less time 
supporting their standing or sitting postures. Motor de-
velopment changes dramatically at the same time that 
children are breaking into language learning. Using these 
automated detections, we found that infants’ changing 
posture and orientation to their caregiver jointly shaped 
the amount of social information that was in their view 
during one-on-one play sessions with their caregivers. 
Children saw the most faces/hands when they were sitting 
or standing and close to their caregiver versus crawling 
or prone. These same findings were recapitulated in a 
second dataset collected by Franchak et al. (2018) with 
1-year-olds: sitting and upright infants saw more faces—
and hands—than infants who were prone. Motor devel-
opment appears to modulate how infants experience their 
visual world and the social information in it.

While exploratory, our results also suggest that in-
fants saw a greater proportion of hands around naming 
events, hinting that children may have been orienting to-
ward their caregiver when they heard labels for objects. 
While this effect was not present for faces, other work 
(Yoshida & Smith, 2008; Yu & Smith, 2013, 2017), includ-
ing Franchak et al. (2018), has found that infants spend 
much more time looking at the toys versus their caregiv-
er's faces during these play sessions, and highlighted the 
importance of hand-following as a component of joint 
attention (Yu & Smith, 2017). However, given that there 
were only two possible referents in the room at a time—
and one of them was always a familiar category—this 
particular play session did not present many opportuni-
ties where children would need to use gaze cues to dis-
ambiguate referents. Nonetheless, if this is generalizable, 
this result suggests that typically developing children 
may capitalize on this additional form of social informa-
tion during learning, opening up new avenues for explor-
ing how this may vary in children with autism spectrum 

disorder who show different patterns of attention to 
faces (for a review, see Chita-Tegmark, 2016).

Overall, our results suggest children’s changing lo-
comotor abilities substantially change the social infor-
mation that children have access to as they are learning. 
These results are consistent with an emerging litera-
ture highlighting children as active learners (Xu, 2019) 
whose own abilities to act on the world are major fac-
tors in the social information they see. Walking versus 
crawling children make more bids toward their caregiv-
ers (Karasik et al., 2014), and in this study and others 
(Franchak et al., 2018) tend to see more social informa-
tion. From this theoretical perspective, children are far 
from sponges that soak up combinations of statistical 
regularities and social cues in their environment: rather, 
children’s changing cognitive, linguistic, and motoric 
abilities modulate the kinds of social information that 
they experience.

Importantly, however, all of these findings come from 
observational, in-lab datasets, posing important limits on 
their generalizability. Furthermore, while the quantity 
of video data analyzed in these studies goes far beyond 
that of prior work, the data come from a relatively small 
number of children, and this sample was selected based 
on those who tolerated wearing the camera during the ex-
perimental session. Future work is thus needed to relate 
the slices of experience captured during these in-lab play 
sessions with infants’ everyday experiences (Clerkin et al., 
2017; Fausey et al., 2016; Yu, & Smith, 2017).

More broadly, though observational findings allow 
us to document developmental change and identify 
potential causal pathways, they cannot confirm them. 
As children grow and change, the activities in which 
they engage with their caregivers are likely to also vary, 
leading to differences in the distribution of social cues 
that they experience that may not be captured. Finally, 
locomotive abilities are of course only part of a cas-
cade of changes in infants’ abilities and experiences, 
and these analyses document only a fraction of this 
broader, multifaceted trajectory in a population of 
children from primarily WEIRD contexts—white, ed-
ucated, industrialized, rich, and democratic (Henrich 
et al., 2010). Parenting practices with respect to motor 
development can and do vary widely across cultures 
(Karasik et al., 2018)—and these choices likely influ-
ence the social cues that children see and how they use 
them.

Understanding the relationship between differ-
ent domains of developmental changes in naturalistic 
contexts has been a persistent challenge for develop-
mental psychology. We are enthusiastic about the po-
tential of the current approach for documenting these 
developmental trajectories and for generating new hy-
potheses. The field of computer vision has advanced 
dramatically in recent years, creating a new generation 
of algorithmic tools that deal better with noisier, more 
complicated datasets and extract richer information. 
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In particular, we believe that these new tools will allow 
the field to make progress on longstanding questions 
regarding the consistency and variability in devel-
opmental changes observed in limited populations 
from relatively small studies. By reducing the burden 
of manual annotations—and, in this case, providing 
richer information about the entire pose of the people 
in the child’s view—these novel methodologies allow 
the analysis of the entirety of datasets of which only 
a fraction are usually annotated. We hope that these 
new tools can now be leveraged to examine the conse-
quences of the changing infant perspective for linguis-
tic, cognitive, and social development.
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family = “binomial”). Full analysis code is available on 
the OSF repository for this project.

SU PPLEM EN TA L A NA LYSE S: M A N UA LLY 
A N NOTAT ED FACE S A N D H A N DS
To better understand the degree to which different de-
tection accuracies for faces/hands may have influenced 

our results, we also examined whether there were any 
age-trends in the random sample of the manually anno-
tated “gold set” of faces/hands. While this set of frames 
(504 frames for faces, 252 frames for faces) is very 
small—and thus the error bands very large—the same 
basic trends were recovered yet highlight that wrist de-
tections underestimate the proportion of hands in view.

F I G U R E  A 1   Face/wrist detections from the automated method (OpenPose) are plotted relative to face/wrist detections on a small random 
sample of frames annotated manually by two of the authors


