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Human object-selective cortex shows a large-scale organization
characterized by the high-level properties of both animacy and
object size. To what extent are these neural responses explained by
primitive perceptual features that distinguish animals from objects
and big objects from small objects? To address this question, we used
a texture synthesis algorithm to create a class of stimuli—texforms—
which preserve some mid-level texture and form information from
objects while rendering them unrecognizable. We found that unrec-
ognizable texforms were sufficient to elicit the large-scale organi-
zations of object-selective cortex along the entire ventral pathway.
Further, the structure in the neural patterns elicited by texforms was
well predicted by curvature features and by intermediate layers of a
deep convolutional neural network, supporting themid-level nature
of the representations. These results provide clear evidence that a
substantial portion of ventral stream organization can be accounted
for by coarse texture and form information without requiring ex-
plicit recognition of intact objects.

ventral stream organization | mid-level features | object recognition |
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The ventral visual stream transforms retinal input into repre-
sentations that help us recognize the categories of objects in

the visual world (1, 2). The structure of this cortex has been
characterized at various levels of granularity. For a few specific
categories—faces, bodies, scenes, and visual words—there is a
mosaic of highly selective neural regions in occipitotemporal
cortex (3–6). Other basic-level category distinctions (e.g., shoes
vs. keys) lack clear category-specific regions, but they also can be
decoded from multivoxel patterns in this same cortex (7, 8). Even
broader categorical distinctions reflecting the animacy and real-
world size of objects are evident in the large-scale spatial struc-
ture of occipitotemporal cortex (9–13). While these organizing
dimensions of the ventral stream are well documented, under-
standing the nature of the visual feature tuning underlying these
ubiquitous categorical responses and their spatial organization
across the cortex has proven notoriously difficult.
One key challenge is methodological: Any measured neural

response to recognizable object categories may actually reflect
the processing of low-level image statistics, mid-level perceptual
features, holistic category features, or even semantic associations
that are not visual at all (or some combination of these features).
In other words, there is a continuum of possible representational
levels that could account for neural responses to object cate-
gories. Within a classic view of the ventral visual hierarchy (1, 14)
there is broad agreement that low-level features are processed in
early visual regions and high-level, categorical inferences take
place in later, downstream regions, including the anterior tem-
poral lobe (15). However, for the neural representations in in-
termediate occipitotemporal cortex, there is active debate about
just how “high” or “low” the nature of the representation is.
At one extreme, some evidence suggests that the categorical

neural responses are quite high-level, reflecting the interpreta-
tion of objects as belonging to a given category rather than
anything about their visual appearance per se (see ref. 16 for a
recent review). For example, when ambiguous moving shapes are
identified as “animate,” they activate a cortical region that pre-

fers animals (17, 18). Within the inanimate domain, hands-on
training to treat novel objects as tools increases neural responses
to these novel objects in tool-selective areas (19). In addition,
differences between object categories persist when attempting to
make them look as similar as possible [e.g., a snake vs. a rope
(20–22), but see ref. 23 for critiques to this approach]. These
findings and others from congenitally blind participants (24–28)
have led to the strong claim that visual features are insufficient
to account for categorical responses in visual cortex (16).
At the same time, a growing body of work demonstrates that

neural responses in occipitotemporal cortex also reflect very low-
level visual information. Retinotopic maps are now known to
extend throughout high-level visual cortex (29–34). Furthermore,
low-level visual features such as luminance and the presence of
rectilinear edges account for a surprising amount of variance in
neural responses to objects (35, 36). More recently, some evidence
suggests that recognizable objects and unrecognizable, locally
phase-scrambled versions of objects yield similar neural patterns
across occipitotemporal cortex (37, but see ref. 38). Taken to-
gether, these results have led to an alternative proposal in which
the categorical responses of occipitotemporal cortex are solely a
byproduct of simple low-level visual-feature maps and are not
related to the categories per se (39, 40).
These two current viewpoints represent two prominent models of

how to characterize the representations in occipitotemporal cortex.
In an intermediate account, neural responses in occipitotemporal
cortex reflect tuning to visual features of intermediate complexity
(e.g., refs. 13 and 41–43). That is, it is mid-level features, combi-
nations of which reflect the “shape of things” (7), that underlie cate-
gorical responses. However, neural evidence for a mid-level feature
representation is sparse, in part because there is no widely accepted
model of mid-level features. For example, is the basis set of this
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feature space derived from generic building blocks (i.e., ref. 44)
or from features tightly linked to categorical distinctions (e.g.,
the presence of eyes)? As such, isolating mid-level representa-
tions and mapping their relationship to categorical responses are
challenging both methodologically and theoretically.
Here, we approached this challenge by leveraging a class of

stimuli—“texforms.” Specifically, we used a texture-synthesis
algorithm to generate synthetic stimuli which capture some tex-
ture and coarse form information from the original images but to
most people look like “texturey blobs” (Fig. 1 and SI Appendix,
Fig. S1) (45–48). These stimuli have two properties that make
them particularly well suited for probing neural levels of repre-
sentation along the visual hierarchy. First, people cannot identify
what these stimuli are at the basic level (e.g., as a “cat”); thus
texforms clearly lack some critical high-level features, i.e., those
that enable basic-level categorization (SI Appendix, Fig. S2). How-
ever, even though texforms are not identifiable, they do retain some
statistical visual information related to the broad classes of animals
vs. objects and big objects vs. small objects, distinctions that are
known to structure the large-scale organization of occipitotemporal
cortex (10, 11). For example, participants seem to rely in part on
the perceived curvature of a texform to guess above chance whether
it is animate or inanimate and whether it is big or small in the world
(SI Appendix, Figs. S3 and S4) (46–48). Thus, with this stimulus set
we are now poised to ask whether the features preserved in these
texform stimuli are sufficient to drive neural differences between
animals and objects of different sizes and where along the ventral
stream any differences manifest.
To anticipate our results, we find clear evidence that the mid-level

perceptual features preserved in texforms are sufficient to drive
the ventral stream organization by animacy and object size. Sur-
prisingly, these differences manifested extensively throughout the
entire occipitotemporal cortex, driving even more anterior, pur-
portedly “high-level” regions. To better understand the nature of the
visual representation in this cortex, we used a model comparison
approach, testing how well a variety of image-feature models could
predict the structure in the neural responses to both texforms and
recognizable images. These analyses revealed that both perceived
curvature ratings and the intermediate visual features learned by
deep convolutional neural networks (CNNs) (49) were able to ex-

plain a substantial portion of the variance in neural response patterns
to texforms and recognizable images; in contrast, models based on
low-level image statistics fit poorly. These results demonstrate that
animacy and object size responses in occipitotemporal cortex can be
explained to a large degree by mid-level perceptual features in-
cluding texture and coarse form information. We propose that mid-
level features meaningfully covary with high-level distinctions
between object categories and that this relationship underlies
the large-scale organization of the ventral stream.

Results
Observers viewed texform images of big objects, small objects,
big animals, and small animals, followed by their recognizable
counterpart images, while undergoing functional neuroimaging.
Fig. 1 shows the full stimulus set. All images were presented in a
standard blocked design, enabling us to examine the univariate
effects of the two main dimensions (animacy and size) for both
texforms and original image sets.
Additionally, we included a nested factor in the design related

to texform classifiability. Specifically, for each texform, a classifi-
ability score was calculated based on how well a separate set of
observers could guess its animacy and real-world size (SI Appen-
dix, Fig. S3). These scores were used to vary the classifiability of
each block of texforms systematically (Methods), and original
images were also presented in the same groups in yoked runs. This
nested factor created a secondary, condition-rich design, enabling
us to examine the structure of multivoxel patterns to texforms and
original images. Importantly, subjects in the neuroimaging ex-
periment were never asked to identify or classify the texforms and
were not even informed that they were viewing pictures generated
from recognizable images (see also SI Appendix, Fig. S5).

Animacy and Object Size Topographies. To examine whether tex-
forms elicited an animacy organization, we compared all animal
and object texform univariate responses in each participant by
plotting the difference in activation within a visually active cortex
mask (all > rest, t > 2) (SI Appendix, Fig. S6). Systematic dif-
ferences in response to animal versus object texforms were
observed across the entire occipitotemporal cortex, with a
large-scale organization in their spatial distribution. The

Texforms Originals

 Big Objects Small Objects Big Animals Small Animals  Big Objects Small Objects Big Animals Small Animals

Fig. 1. Texforms (Left) were generated using a texture-synthesis model (45) from recognizable pictures (Right) of 30 big objects, 30 small objects, 30 big
animals, and 30 small animals. Stimuli are shown at slightly higher contrast for visualization purposes. Stimuli were selected so that all texforms were un-
recognizable at the basic level using online recognition experiments.
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same analysis was conducted using responses measured when ob-
servers viewed the original, recognizable images of animals and
objects. The preference maps for both texforms and original animacy
organizations are shown for a single subject in Fig. 2A and reveal a
striking degree of similarity (see group topographies in SI Appendix,
Fig. S7 and all single-subject topographies in SI Appendix, Fig.
S8). Thus, even though there is an obvious perceptual difference
between texforms and recognizable objects, they elicit similar
topographies along the entire occipitotemporal cortex.
To quantify this correspondence, we computed the correlation

between the original and texform preference maps separately in
each participant within active occipitotemporal voxels following
ref. 50 (Methods). The map correlation coefficients for each
participant and the average correlation coefficient for the group
are plotted in Fig. 2B. Overall, voxels in occipitotemporal cortex
had similar animacy preferences for recognizable and texform
images in all subjects, resulting in a robust correlation at the
group level (average r = 0.74, SD = 0.07, permutation test sig-
nificant in each subject, all P < 0.001; average noise ceiling
across subjects, r = 0.81, SD = 0.06) (Methods).
Next, we used a similar analysis to examine whether texforms

also elicited a real-world size organization. Given that the size
organization is found only for inanimate objects, not animals
(10), we compared the responses to big objects versus small
objects. Note that this yields half the power in the design to
examine the object size organization relative to the animacy
organization. Nonetheless, big and small object texforms elicited
robust differential responses along the ventral stream, with a
systematic large-scale spatial organization similar to that elicited
by original images (Fig. 2C; see group topographies in SI Ap-
pendix, Fig. S7 and all single-subject topographies in SI Appendix,
Fig. S8). Quantitatively, moderate correlations between original
and texform preference maps were found in all but one partici-
pant, resulting in robust map correlations at the group level
(average r = 0.41, SD = 0.20, permutation test significant in
seven of eight subjects at P < 0.001) (Methods and Fig. 2D).
While the overall magnitude of the object size group map cor-
relation was weaker than the animacy map correlation, note that

the noise ceiling of the data was lower, likely reflecting the fact
that half the data were used in this analysis (average noise ceiling
across subjects, r = 0.39, SD = 0.32) (Fig. 2D).
Given that some texforms are better classified by their ani-

macy and real-world size, do these better-classified texforms
elicit spatial topographies that are even more similar to those for
the original images? To examine this possibility, we split the data
in half by texform classifiability. For the animacy distinction, map
correlations between original images and texforms were higher
for better-classified texforms (average r = 0.73) than for more
poorly classified texforms [M = 0.45, t(7) = 7.00, P < 0.001].
However, the size organization was not as strongly influenced
by classifiability [average map correlation for better-classified
texforms vs. original images: M = 0.35; poorly classified texforms
vs. original images: M = 0.29; t(7) = 1.25, P = 0.25].
There are at least two possible reasons for this result. On one

hand, better-classified texforms could drive stronger animacy re-
sponses because neural responses to better-classified texforms are
amplified by top-down feedback from other regions that process
semantic information. However, an alternative possibility is that
better-classified texforms also better preserve the relevant textural
and curvature statistics of animals and objects (47, 48). We return
to this effect of texform classifiability on neural responses in the
predictive modeling section, exploring in detail why more classi-
fiable texforms might drive differential neural responses.

Posterior-to-Anterior Analysis. Within a classic view of the ventral
stream hierarchy, posterior representations reflect more primitive
features, and anterior representations reflect more sophisticated
features. We next looked for evidence of this hierarchy with re-
spect to the animacy and object-size organizations, specifically
examining whether original images evoked stronger animacy and
size preferences than texforms in more anterior regions. To do so,
we defined five increasingly anterior regions of occipitotemporal
cortex using anatomical coordinates (Methods and Fig. 3).
We first looked at animacy preferences along this gradient to

determine whether the category preference becomes increasingly
larger for original images (vs. texforms) in more anterior regions.

Animacy map correlations Texforms Originals
Single subject example
Animacy organization

Object size organization Object size map correlations 
Single subject example

Texforms Originals

Small 
Objects

Big
Objects

.3

-.3A
ct

iv
at

io
n 

d
iff

er
en

ce

Animals

Objects

.3

-.3A
ct

iv
at

io
n 

d
iff

er
en

ce

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

m
ap

 c
or

re
la

tio
n 

(r
)

0.0

0.2

0.4

0.6

0.8

1

0.0

0.2

0.4

0.6

0.8

1

m
ap

 c
or

re
la

tio
n 

(r
)

single subjects group

single subjects group

A B

C D

Fig. 2. Preferencemap analyses. (A and C) Response preferences within active occipitotemporal voxels are plotted for animals vs. objects (A) and for big vs. small objects
(C) in an example participant, considering texform images (Left) and original images (Right). The color bar reaches full saturation at activation differences be-
tween 0.3 and −0.3 (reflecting the beta difference calculated from this individual’s GLM). (B and D) The correlation between the original and texform response maps in
active occipitotemporal voxels is plotted for the animacy (B) and object size (D) distinctions. Correlations between original image and texform imagemaps are shown for
all individual participants and for the group, averaged across all subjects. Gray dots indicate the estimated noise ceiling for each participant and at the group level.
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The overall strength of the animal/object preferences in each
sector is shown in Fig. 3A (see also SI Appendix, Fig. S9), where
the solid lines show the average preference strength for original
images, and the dashed lines show the average preference
strength for texform images. If original images exhibited stronger
category preferences in more anterior regions, this would be
evident by an increasing difference between the solid and dashed
lines. Instead, these two lines are relatively parallel [average
activation difference for each section in animacy preferences for
original images vs. texforms: MS1 = 0.14, MS2 = 0.20, MS3 = 0.15,
MS4 = 0.15, MS5 = 0.12; average rank correlation across subjects
between these activation differences and anatomical sections:
r = −0.34, t test against zero, t(7) = −1.92, P = 0.10] (Fig. 3A).
Thus, this analysis reveals that original images generate stronger
category preferences than do texforms across all anatomical
sections, not only in more anterior ones.
When we conducted the same analyses on the object size dis-

tinction, we found the same pattern of effects. That is, original
images elicited stronger big/small object preferences than tex-
forms across all anatomical sections, and this difference was rel-
atively consistent from posterior to anterior sections [average
activation difference for each section in object size preferences for
original images vs. texforms: MS1 = 0.09, MS2 = 0.05, MS3 = 0.09,
MS4 = 0.07, MS5 = 0.05; average rank correlation between these
activation differences and anatomical sections: r = −0.25, t test
against zero, t(7) = −1.17, P = 0.28] (Fig. 3B). In other words, we
found little if any evidence for the pattern of results that might be
expected from a simple visual hierarchy in which texforms and
original neural responses matched in posterior areas but diverged
in anterior areas. Instead, the difference in animacy/size prefer-
ences for original images vs. texforms remained relatively constant
across the full posterior-to-anterior gradient.
One possible factor that might influence the interpretation of

this result is the overall neural activity: Perhaps original images
simply drive all voxels along the ventral stream more than tex-
forms, and thus the greater animacy/size preferences we observe
for original images actually reflect a better signal-to-noise ratio.
If so, the original and texform organizations may be even more
similar to each other than we have measured. To examine this
possibility, we analyzed the overall magnitude of the neural re-
sponse to original images vs. texforms along this posterior-
to-anterior axis, averaging across all animacy/size conditions.
Overall, voxels were driven relatively similarly by both texforms
and original images across all anatomical sections, although
recognizable images generated slightly more overall activity than
texforms in the more anterior sections [average activation dif-
ference between original images and texforms in each section:
MS1 = −0.01, MS2 = 0.07, MS3 = 0.12, MS4 = 0.11, MS5 = 0.14;
average rank correlation between activation differences and
anatomical sections: r = 0.59, t test against zero, t(7) = 3.84, P =
0.006] (SI Appendix, Fig. S10). Thus, it was not the case that
original images elicited stronger overall responses everywhere,

and the response magnitude is unlikely to explain away the result
that original images elicit stronger animacy/object and big/small
object preferences across the ventral stream.
In sum, both texforms and recognizable images generated

large-scale topographies by animacy and object size throughout
the entire ventral stream, with recognizable images generating
overall stronger category preferences (SI Appendix, Fig. S11).
We did not find strong evidence for a hierarchy of representa-
tions that differentiated between texforms and recognizable
images. Instead, these results point toward mid-level features as
a major explanatory factor for the spatial topography of object
responses along the entire occipitotemporal cortex.

Tolerance of Retinal Position. Given the extensive activation of
these texforms along the ventral stream, one potential concern
is that these texform topographies may reflect simple retinotopic
biases that also extend throughout this cortex rather than mid-level
feature information per se. For example, if animal texforms hap-
pen to have more vertical information in the lower visual field, and
object texforms have more horizontal information in the upper
visual field, then such low-level retinotopic differences might ac-
count for the responses observed in the main experiment. To test
this possibility, we conducted a second experiment in which a
different group of observers was shown the same stimuli (both
texforms and recognizable images), but each image was presented
separately above and below fixation (SI Appendix, Fig. S12). If
animacy and size preferences are maintained over changes in
visual field position, this provides evidence against a simple
retinotopic explanation.
In our first analysis, we examined how much of occipitotemporal

cortex showed location-tolerant animacy and size preferences
separately for original images and texforms. To do so, animal vs.
object preferences were computed separately when images were
presented in the upper visual field location and in the lower visual
field location. We retained voxels that showed the same category
preference (e.g., animals > objects or objects > animals) when
stimuli were presented in the upper visual field and when stimuli
were presented in the lower visual field (SI Appendix, Fig. S13).
The percent of retained voxels relative to the total set of active
occipitotemporal cortex voxels was computed for both the animacy
and object size distinctions for both original and texform images
separately in each participant.
When subjects viewed the original images, we found that 71%

(SD = 4%) of voxels in occipitotemporal cortex showed location-
tolerant animacy preferences, and 55% (SD = 8%) of voxels showed
location-tolerant object size preferences. When subjects viewed
texforms, we found that 56% (SD = 13%) of occipitotemporal
voxels showed location-tolerant animacy preferences, and 47%
(SD = 5%) of voxels showed location-tolerant object size pref-
erences. Thus, both recognizable images and texforms elicited
animacy and object size preferences that were largely tolerant to
changes in visual field position.
Next, we assessed the similarity of category preferences elicited by

texform and original images within these location-tolerant voxels.
That is, do the voxels that show location-tolerant preferences for
animacy and size when subjects view original images show the same
category preferences when subjects view texforms? Animacy/object
size topographies for texforms/original images are shown within these
location-tolerant conjunction voxels in Fig. 4A and qualitatively
show similar spatial profiles (see group topographies in SI Appen-
dix, Fig. S14 and all single-subject topographies in SI Appendix, Fig.
S15). Quantitatively, we again conducted map correlations within
voxels that showed consistent category preferences across retinal
locations for original images. Texform and original topographies
again showed a high degree of spatial correspondence within these
location-tolerant voxels, evident in single subjects and at the group
level (animacy: average r= 0.67, SD= 0.12; size: average r= 31, SD=
0.11, permutation tests against shuffled voxel baseline significant in all
subjects at P < 0.001) (Fig. 4B). Furthermore, when we relaxed our
voxel-inclusion criterion, analyzing map correlations within all visually
active voxels in occipitotemporal cortex, as in experiment 1, we found
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the same pattern of results (animacy: average r = 0.60, SD = 0.11;
size: average r = .25, SD = 0.11), indicating that the stringent voxel-
inclusion criterion did not bias the results.
Compared with the initial experiment, the organizations found

in the second experiment are sparser, particularly for the object
size distinction. This may indicate stronger retinotopic contri-
butions for the object size relative to the animacy distinction or
may simply reflect the lower signal-to-noise ratio in the object
size analysis (for which only half the data are used). Nonetheless,
these results demonstrate that these topographies reflect mid-level
information that is tolerant of changes in visual field position,
replicating and extending the primary finding.

Predictive Modeling: Texforms. We next aimed to provide insight
into the nature of the mid-level features that actually drive these
animacy and size texform response differences across the ventral
stream. To do so, we compared how well a variety of models
predict the multivoxel pattern similarity to groups of texforms
across occipitotemporal cortex (51–53).
We first constructed representational dissimilarity matrices

(RDMs) in occipitotemporal cortex using data from the richer
condition structure nested in our experiment design (SI Appendix,
Fig. S16). Recall that every time observers saw a block of texform
images, this block was comprised of a set of texforms from one of
six levels of classifiability. The more classifiable the texform, the
better a separate group of norming participants was able to guess
that this texform was generated from an animal versus an object, or
from a big versus small thing in the world (SI Appendix, Fig. S3).
Examples of well-classified and poorly classified texforms (and
their accompanying original counterparts) are shown in Fig. 5A.
Fig. 5B shows the similarity in the multivoxel patterns elicited

by texforms and the corresponding original images. The texform
RDM has some gradation in texform levels of classifiability,
which by inspection shows that more classifiable texforms are
more dissimilar from each other. By comparison, the structure in
responses to recognizable images is more categorical in nature,
with a clear animate/inanimate division that is visually evident in
the quadrant structure of the RDM and with a weaker but visible
big/small object division in the upper left quadrant.
What features best predict this neural similarity structure

generated by texforms? Here, we tested the predictive power of a
range of feature spaces, including basic image statistics, activa-
tions in each layer of a deep CNN (49), and behavioral ratings of
perceived curvature, using a weighted representational modeling

procedure as introduced in ref. 51. This procedure entailed
constructing RDMs for each feature in a given feature space and
weighting the individual features to best predict the group neural
RDM. Model performance was cross-validated using an iterative
procedure (Methods and ref. 51). The key outcome measure is the
degree to which this predicted neural RDM matches the observed
neural data in each subject (using rank correlation Kendall tau-a,
τA). All model performance is put in the context of the neural
noise ceiling, reflecting how well a given subject’s RDM can
predict the group RDM (Methods, Fig. 6A, and ref. 52).

Basic Image Statistics. First, we examined how well combinations
of low-level image statistics could account for the observed neural
structure. While some prior work has found such statistics to be an
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age category responses when texforms (Left) and
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gardless of the stimuli’s location in the visual field
and are shown separately for animacy (Upper) and
size (Lower). (B) Conjunction map correlation values
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and at the group level separately for animacy (Up-
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dicate the noise ceiling for each participant and at
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insufficient basis for predicting the geometrical layout of cate-
gorical responses in the inferior temporal cortex (53, 54), others
have argued for their sufficiency (37, 55). With our cross-
validation modeling procedure, we found that weighted linear
combinations of the texture-synthesis model features predicted
relatively little variance in the neural patterns relative to the noise
ceiling [τA = 0.16; noise ceiling τA = (0.38–0.48)]. Consistent with
this result, other models based on low-level image statistics also
captured only a small amount of variance (Gabor model, τA =
0.12; Gist model, τA = 0.10) (56). Thus, linear combinations of
relatively simple visual features were not sufficient to predict the
multivoxel patterns of occipitotemporal cortex.

Convolutional Neural Network.We next tested models constructed
from deep CNN unit responses, reflecting the state of the art in
predicting neural responses to objects (53, 57). To do so, we
extracted the feature representations throughout all layers of a
CNN (AlexNet) (SI Appendix) in response to texforms. Note that
while this CNN was pretrained to categorize 1,000 object cate-
gories, it was not specifically trained on (or tuned to) any of the
texform images or their recognizable counterparts.
Models constructed from representations in the earliest layers of a

CNN performed poorly, similar to the models based solely on image
statistics. However, predictive ability increased through the first few
convolutional layers, plateauing around convolutional layers 4 and 5
(layer 4: τA = 0.31; layer 5: τA = 0.32). Thus, the variation in neural
patterns in response to different groups of texforms was relatively
well captured by responses in mid-level convolutional layers of a
deep CNN. These results reveal that mid-level features captured by
these intermediate CNN layers can explain the variation in neural
patterns in response to different groups of texforms.

Curvature Ratings. We next asked how well the perceived curva-
ture ratings could explain this neural structure, based on be-
havioral evidence that boxy/curvy ratings distinguish animals,
small objects, and big objects (SI Appendix, Fig. S4) (46–48) and
in line with a growing body of work implicating curvature as a
critical mid-level feature in ventral stream responses (36, 50, 58).
We found that this simple, one-dimensional model based on
curvy/boxy judgments was able to predict the structure moderately

well (τA = 0.28), capturing almost 50% of the variance in the
neural patterns elicited by texforms.

Animacy/Size Classification. As a sanity check, we examined the
performance of a behavioral model constructed directly from the
classification scores used to group the texforms into the nested
conditions by classifiability. We expected this model to perform
well, as we built this structure into our experiment design.
Overall, we found that these animacy/size judgments were able
to predict the structure of texform responses near the noise
ceiling [average subject RDM-to-model correlation, τA = 0.38;
noise ceiling τA = (0.38–0.48)]. This result confirms that the
neural patterns in response to texforms varied as a function of
the classifiability of the texforms; groups of texforms that were
better classified by their animacy/size elicited more distinct
neural patterns.
A summary of these texform modeling results in occipitotemporal

cortex is shown in Fig. 6A. To visually inspect the structure captured
by the different models, predicted neural RDMs from several
models are shown. The overall performance for all models,
reflecting the average model-to-subject RDM correlation, is shown
in the bar plot. Taken together, these analyses show that models
based on intuitive curvature ratings and intermediate layers of
a deep CNN captured this neural structure relatively well, while
models based on early CNN layers and simple image statistics were
insufficient. Broadly, these modeling results provide computational
support for the mid-level nature of this neural representation and
help triangulate the kinds of features that drive neural responses
to texforms in occipitotemporal cortex (i.e., curvy/boxy mid-level
features of intermediate complexity).
The success of the CNNmodeling also helps clarify the role that

texform classifiability has on neural responses. Specifically, one
potential factor in interpreting neural responses to texforms is that
the more classifiable texforms may engender feedback such that
top-down effects could contribute to the apparent organization
(e.g., some evidence for an animal causes attentional amplification
of animal-related regions). However, CNN responses to texforms
were able to predict neural responses to texforms relatively close
to the noise ceiling. Critically, the CNN does not have top-down
feedback and thus has no mechanism by which to amplify any
animacy/size differences (see also SI Appendix, Figs. S17 and S18 for
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Fig. 6. (A, Upper) Neural patterns in response to texforms (shown in Fig. 5B) and predicted neural dissimilarities for selected models obtained through the cross-
validation procedure. (Lower) The bar plot shows the predicted model correlation (Kendall τA). Error bars reflect the SE of the model fit across individual subject’s
neural patterns in occipitotemporal cortex. The bars show different models, from left to right: Freeman and Simoncelli texture model (black), Gabor model (dark
gray), Gist model (light gray), AlexNet features layers 1–7 (yellow to red), curvature behavioral ratings (light blue), and animacy/size behavioral ratings (dark blue).
Data are plotted with respect to the noise ceiling of neural responses to texform images across participants, shown in light gray. (B, Upper) Neural patterns in re-
sponse to original images (shown in Fig. 5B) and predicted neural dissimilarities for four models obtained through the same leave-one-condition-out cross-validation
procedure. (Lower) The average predicted model correlation (Kendall τA) is plotted for different models, as in A, with AlexNet features extracted from both original
images and texforms. Data are plotted with respect to the noise ceiling of neural responses to original images across participants, shown in light gray.
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modeling results in each anatomical section of occipitotemporal
cortex). Thus, the modeling results are consistent with the idea that
some texforms are more classifiable than others because they pre-
serve more of the relevant mid-level features.

Predictive Modeling: Recognizable Images and Cross-Decoding. For
completeness, we also compared how well the same set of
models could predict the structure of neural responses to original
images; the results are summarized in Fig. 6B (see also SI Ap-
pendix, Fig. S19). Overall, we found a pattern of results similar to
that we found with texforms: Basic image statistic models per-
formed poorly [Freeman & Simoncelli features: τA = 0.15;
Gabor features: τA = 0.14; Gist model: τA = 0.13; neural noise
ceiling τA = (0.73–0.77)], while the feature representations eli-
cited in deep CNNs by recognizable images almost fully pre-
dicted these neural patterns by intermediate layers (layer 4: τA =
0.64; layer 5: τA = 0.66). Interestingly, as with texforms, a model
based on curvy/boxy judgments of the original images also
accounted for a substantial portion of the variance (τA = 0.45).
Finally, a categorical model of animacy and object size only
performed moderately well (τA = 0.41), consistent with prior
work highlighting that occipitotemporal cortex has a more
graded similarity structure (53). Taken together, the predictive
power of the intermediate CNN layers and the curvature ratings
suggest that mid-level representation underlies a substantial
component of neural responses to recognizable images.
We next performed a stronger test of this argument by con-

ducting a cross-decoding analysis. Specifically, we examined
whether neural responses to original images could be predicted
using the CNN features extracted from texforms. In other words,
we tested whether the neural similarity of original images could
be predicted from deep neural network responses to the texform
counterparts of each original image. Indeed, CNN texform fea-
tures were able to predict much of the RDM structure elicited by
recognizable images (layer 4: TA = 0.46) (Fig. 6B). This cross-
decoding analysis further supports the idea that the neural re-
sponses to recognizable objects are driven substantially by mid-level
feature information.

Discussion
We employed a stimulus set—texforms—to examine if and how
mid-level features contribute to the large-scale organization of the
ventral stream. We found that (i) texform stimuli were sufficient
to elicit animacy and size topographies along occipitotemporal
cortex, well into what are classically considered higher-level
object-selective areas; (ii) these mid-level topographies were not
inherited from low-level retinotopic biases, as they generalized over
the visual field position; (iii) the similarity in the structure of the
neural representations of both texforms and recognizable images
was best predicted by intermediate layers of a deep CNN, with a
simple curvy–boxy perceptual axis explaining a modest amount
of the structure; and (iv) texform model features were able to
account for a substantial amount of the neural similarity structure
elicited by the original recognizable images.
Taken together, these findings establish that differences in

mid-level features can drive extensive categorical neural re-
sponses along the ventral stream and underlie the topographic
organization by animacy and object size. Broadly, these results
inform the debate about the nature of object representation in
occipitotemporal cortex: First, they challenge a simple concep-
tion of the visual hierarchy, as relatively primitive texforms drove
category differences in what is typically considered high-level
visual cortex. Second, they highlight that curvature covaries with
broad category distinctions and provide an intuitive description
of the kind of mid-level featural information represented in this
cortex. Below, we discuss the implications of these findings for
models of the ventral stream, whether purely low-level features
could account for these findings, the role of curvature in ventral
stream organization, and why we observe a gap in neural re-
sponses to texforms vs. original images.

Implications for Models of the Ventral Stream. There are two main
observations to note about the texform topographies, each with
separate implications for the nature of representation along the
ventral stream. The first observation is that the neural differ-
ences between different kinds of texforms are detectable at all.
Consider Fig. 1: These stimuli all look like textured blobs. Par-
ticipants have no idea what they are seeing or even that there are
different kinds of things here. One real possibility was that the
differences between the texforms would be far too subtle to drive
any measurable differences in brain responses, especially mea-
sured with fMRI. However, the data show that the visual system
not only tracks these incoming texforms but also triggers specific
neural responses that cleanly align with the animacy and the
object size organizations. These data provide strong evidence
that these regions do not require clearly defined features, such as
eyes and tails or handles or even outer contours, to trigger re-
sponses that distinguish animals and objects of different sizes.
Instead, these data provide evidence that a more statistical and
primitive level of features supports broad category distinctions
along the ventral stream.
The second observation is that these texform topographies

actually extend much farther anterior than one might expect
from a classic view of the ventral stream as a hierarchy. Within
this classic view, neural regions require increasingly complex vi-
sual features to trigger a response (43). A widely held assump-
tion is that the more complex identity-level representations in
anterior regions achieve this more abstract and invariant level of
representation at the expense of sensitivity to lower-level visual
information such as visual field position, simple orientation, and
spatial frequency (1, 43, 59, 60). Within this strict conceptuali-
zation of the hierarchy, texforms should solely drive differences
in more posterior areas, e.g., those implicated in processing
texture and curvature (61, 62), and not differences in more an-
terior regions, as they clearly lack the features that enable
identity-level recognition. However, we found that texforms
drive responses along the entire ventral stream. These empirical
findings support a growing view in which higher-level visual
cortex is sensitive to features that span multiple levels of rep-
resentation (13): Anterior regions seem to retain some sensitivity
to low- and mid-level features while also becoming increasingly
tolerant of complex stimulus transformations.

Low-Level vs. Mid-level Features.We have argued for a mid-level of
representation underlying occipitotemporal responses. However,
could even lower-level features explain these results? Model
comparison and neuroimaging data provide convergent evidence
that simple low-level features are not sufficient to account for
the animacy and object size activations along occipitotemporal
cortex. First, we directly considered several low-level feature
models, quantifying how well tuning along these features could
predict the neural response structure in occipitotemporal cortex.
These models performed poorly, especially relative to the more
complex mid-level models (i.e., intermediate layer responses
from a CNN; see also refs. 53 and 54). In fact, even the feature
space we used to generate the texforms was unable to linearly
predict the neural responses in occipitotemporal cortex, implying
that the relevant visual features preserved in texforms are related
to nonlinear combinations of the simpler texture-synthesis features.
Second, we measured neural responses to texforms presented in
upper and lower visual fields, finding that texforms still evoked an
animacy and size organization that was tolerant of visual field posi-
tion. This result argues against an account in which local, retinotopic,
low-level feature tuning explains occipitotemporal responses.
Beyond these methods, another way to examine the contri-

bution of low-level features in occipitotemporal cortex responses
would be to create stimuli that only preserve relatively low-level
image statistics. A recent study did something similar, using
globally scrambled images, and found some correspondence be-
tween original images and their globally scrambled counterparts
(37). However, it is likely that their specific analysis procedures
led to somewhat biased results (38). Further, consistent with
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the present results, they also found that a local-scrambling
condition, which preserved coarse form and texture information,
elicited activations that were much more similar to those of the
original recognizable images than did the globally scrambled images.
Taken together, these results suggest that while occipitotemporal
responses may exhibit some tuning to very low-level features, a
bulk of the response likely reflects tuning at a mid-level of rep-
resentation, where the relative positions of local features matter.

The Role of Curvature in Ventral Stream Organization. We found
that the similarity in the structure of neural responses across
occipitotemporal cortex was well predicted not only by in-
termediate and later layers of a deep CNN but also by a single
intuitive dimension of perceived curvature; this was true for both
original images and unrecognizable texforms. This finding joins
other research documenting the importance of curvature in ven-
tral stream responses. For example, an elegant series of studies
demonstrated the explanatory power of curvature in explaining
single-unit responses in V4 (62–64). Other work has shown sys-
tematic preferences for curvilinear versus rectilinear stimuli in
different category-selective regions in the inferior temporal cor-
tex (34, 36, 50, 65, 66, but see ref. 67). Most recently, curvature has
been proposed as a proto-organizing dimension of the ventral
visual stream (50, 58), and specific curvature-preferring patches
have been discovered in macaques (68). One challenge is that
these studies have operationalized curvature in different ways
(e.g., wavy-to-straight, round-to-rectilinear, curvy-to-boxy). Going
forward, it will be important to develop a quantitative model
that operationalizes curvature in a way that can unify these
findings.
Why might curvature be such an important mid-level prop-

erty? We have previously speculated there is an ecological
(nonarbitrary) relationship between curvature and category: Big
objects tend to be boxier because they must withstand gravity,
while small objects tend to be curvier as they are made to be
hand-held, and animals have few if any hard corners and are the
curviest images (46, 47, 69, 70). In recent work, we have found
direct evidence for this link (47, 48): The curviest texforms tend
to be perceived as animate, and the boxiest texforms tend to be
perceived as big, inanimate objects. Thus, the perceptual axis
from boxy to curvy seems to align meaningfully with the broad
category divisions between animals and objects of different sizes.
Based on these sets of results, we suggest that ventral stream

responses are tuned according to mid-level feature maps that
meaningfully covary with high-level, categorical dimensions. That is,
the level of representation in the neural populations is visual/
statistical in nature, but the organization of this feature tuning is
still reasonably described by high-level animacy and object size
distinctions. This work helps to refine our previous work showing
that the high-level properties of object size and animacy dis-
tinctions yield a tripartite organization of the ventral stream (see
direct comparison in SI Appendix, Fig. S11) (10, 11). Specifically,
that the cortex is organized by these high-level factors does not
mean that the nature of the tuning is also high-level—we think it is
unlikely this cortex is directly computing an abstract sense of size or
animacy per se. Rather, the present data support the idea that
occipitotemporal cortex is largely computing visual shape structure,
where animacy and object size are related to major axes through
this shape space.
Of course, one of the big unanswered questions about the

relationship between mid-level features and high-level organi-
zation is the direction of causality. Are broad category distinc-
tions such as animacy and size evident because there are initial
curvature biases in the visual system? For example, on an input-
driven account, the statistics of visual experience with animals
and objects of different sizes might be sufficient to account for this
large-scale organization: Early retinotopy might naturally give rise
to a large-scale curvature proto-organization in occipitotemporal
cortex (11, 31, 50, 58) which in turn gives rise to a large-scale
organization by the covarying high-level distinctions of animacy
and object size. Alternatively, these mid-level curvature features

might be learned specifically due to higher-level pressures to
distinguish animals, big objects, and small objects (71, 72).
For example, distinct whole-brain networks that support
behaviors such as navigation, social interaction, and tool ma-
nipulation might specifically enforce animacy and object size
shape-tuning in different regions. Note that the present data
cannot speak to the directionality of these low-, mid-, and high-
level factors but speak only to the existence of the link among them.

Differences Between Texform and Original Responses. While we
have emphasized the extensiveness of the texform topographies,
they are certainly distinguishable from the neural responses
evoked by original, recognizable images. First, original images
generated stronger categorical responses than texforms across
the entire ventral stream in both the univariate effects and in
their multivoxel patterns. Second, CNN features extracted in
response to original images were necessary to best predict the
neural structure generated by recognizable images; texform CNN
features did well but did not reach the same level as the original
image CNN features. What accounts for this gap between tex-
form and original images?
It is tempting to consider attentional mechanisms as an ex-

planatory factor; e.g., recognizable images could be more salient
attentional stimuli than texforms, thereby driving stronger ani-
macy/size preferences. However, it is important to note that
CNN models were quite successful at predicting the structure of
the occipitotemporal responses to both texforms and original
images and also showed a gap between texforms and original
images without relying on attentional mechanisms. Thus, tex-
forms might instead drive weaker topographies because they are
missing some critical visual features. What might these visual
features be?
A first possibility is that original, recognizable images contain

category-specific visual features that are captured by the CNN.
For example, these category-specific features could include dif-
ferent sets of characteristic shape parts that differ between
“animates and inanimates” [e.g., animals tend to have tails, eyes,
and ears (70); small objects often have handles and buttons; big
objects may have more extended flat surfaces]. A second possi-
bility is that recognizable images contain additional generic vi-
sual features that are useful for describing any given object. For
example, recognizable images contain strong bounded contours
and other visual features that specify their 3D part-structure,
whereas texforms do not. Thus, an alternative possibility is that
these kinds of generic visual features, not tied to the category
membership of the objects, account for this differential activity.
At stake in this distinction is whether the nature of the visual

representation in occipitotemporal cortex should be considered
more low level or high level (16, 55). Interestingly, CNNs might
be able to provide some insight into these questions. For ex-
ample, if a CNN were trained to perform a simpler task (e.g., a
same vs. different image task), then the units would become
tuned without any category-specific feedback but presumably
would contain some set of generic visual descriptors. However,
perhaps some degree of categorization training (e.g., animate/
inanimate, or face/nonface) may be needed to render CNN units
complex enough to predict categorical neural responses.

Conclusion
The present work investigated the link between mid-level features
and the known animacy and size organizations in occipitotemporal
cortex. We found that mid-level feature differences are sufficient
to elicit these large-scale organizations along the entire ventral
stream. Predictive modeling provided converging support for this
result, as both intermediate layers of CNNs and intuitive ratings of
curvature predicted the similarity in neural patterns elicited by
texforms and recognizable images. This work provides evidence to
situate the level of representation in the ventral stream, demon-
strating that much of object-selective cortical organization can
be explained by relatively primitive mid-level features without
requiring explicit recognition of the objects themselves. Broadly,
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these data are consistent with the view that the entire ventral
stream is predominantly tuned to mid-level visual features, which
are spatially organized across the cortex in a way that covaries with
high-level, categorical dimensions.

Materials and Methods
Participants. Sixteen healthy observers (age range 18–35 y; seven females)
with normal or corrected-to-normal vision participated in a 2-h fMRI session
for experiment 1 (n = 8) and experiment 2 (n = 8). All participants (n =
110 across norming and fMRI experiments) provided informed consent.
Procedures were approved by the Institutional Review Board at Harvard
University.

Stimulus Set. The stimulus set consisted of 240 total images with 120 original
images of 30 big animals, 30 big objects, 30 small animals, and 30 small objects
and their texform counterparts.

Texforms were created using the following procedure. First, images were
normalized for luminance and contrast across the whole set using the SHINE
toolbox (73). Next, each image was placed in a larger gray display at a pe-
ripheral location so it fell within the larger spatial pooling windows gen-
erated by the texture synthesis algorithm (see SI Appendix, Fig. S1A for an
illustration, as used in refs. 46–48). The synthesis algorithm proceeds by
taking thousands of first- and second-order image-statistics measurements
from the display, e.g., Gabor responses of different orientations, spatial
frequencies, and spatial scales. Critically, however, these image statistics are
computed within the local pooling windows (45), differentiating this
method from previous texture-synthesis algorithms. Next, the algorithm
starts with a white noise display and coerces the display to match the
measured image statistics, using a variant of gradient descent that was
terminated after 50 iterations. Then, online norming studies were conducted
on a superset of 240 texforms to choose a set of unrecognizable texforms (SI
Appendix, Fig. S2 A and B).

Texform Classifiability. The classifiability of each texform by its animacy/size
was calculated using online rating experiments (SI Appendix, Fig. S3A).
Specifically, one group of participants (n = 16) was shown a texform and was
asked: “Here is a scrambled picture of something. Was the original thing an
animal?” Participants responded “yes” or “no.” Similarly, three other groups
of participants (n = 16 in each group) judged whether the texform was a
manmade object, was big enough to support a human, or was small enough
to hold with one or two hands. Animacy and size classifiability scores were
calculated for each image as the percent of correct classifications minus the
percent of incorrect classifications. For example, if the texform was gener-
ated from an animal original image, this score was calculated as the percent of
responses “Yes, it’s an animal” minus the percent of responses “Yes, it’s a man-
made object.” The same procedure was followed for size classifiability, e.g., the
percent of answers “Yes, it’s big”minus the percent of answers “Yes, it’s small” if
the original item had a big real-world size and the percent of answers “Yes, it’s
small” minus the percent of answers “Yes, it’s big” if the item had a small real-
world size. This serves as a proxy for a d-prime measure and allows re-
sponse bias to be factored out from the classification scores. With these
measures, the higher the score, the more the image was correctly classified
as an animal or an object and as big or small; negative scores indicate
systematic misclassifications. These animacy and size classification scores
were summed to obtain a composite classification score which was used to
assign the stimuli into six groups of five images per condition (big animals,
big objects, small animals, small objects), from lowest to highest total
classifiability (SI Appendix, Fig. S3B).

fMRI Experiment Design. Observers viewed images of big animals, small an-
imals, big objects, and small objects in a standard blocked design while
undergoing functional neuroimaging (SI Appendix). In the first four runs of
the experiment, observers saw texforms; in the second four runs observers
saw original images. Observers were not told anything regarding what the
texforms were. Unknown to participants, the texform and original runs were
yoked, such the original images were shown in exactly the same sequence
and timing as the texforms. The observer’s task was to pay attention to each
item and to press a button when an exact image repeated back-to-back,
which occurred once per block.

Preference Map Analyses. The spatial distribution and strength of response
preferences in visually active voxels along the ventral stream were visu-
alized using a preference-map analysis (10, 11). Active occipitotemporal
cortex in each participant was defined to include all voxels with all con-

ditions > rest with t > 2 in either texform or original runs, excluding voxels
within the functionally defined early visual areas V1–V3 (SI Appendix, Fig.
S6). For the animacy organization, for each voxel, the average beta for
animals (across big and small sizes) was subtracted from the average beta
for objects (across big and small sizes), and this beta-difference map was
displayed on the cortical surface. For the size organization, for each voxel,
the beta for big objects was subtracted from the beta for small objects and
was displayed on the cortical surface. To compare animacy and real-world
size-preference maps elicited by texform and original images, we used a
map-correlation procedure following ref. 50. The map correlation was
computed as the correlation over voxels between the beta-difference
scores for the texform organization and original organization and was
computed separately for each subject for both animacy and object size
dimensions. See SI Appendix for details on the shuffled baseline and noise
ceiling calculations.

Posterior-to-Anterior Analyses. In each participant, anatomical sections were
defined along a posterior-to-anterior gradient within occipitotemporal
cortex by dividing it into five quantiles using the TAL-Y coordinates of
visually active voxels [taken from each participant’s generalized linear
model (GLM) data]. A measure of the strength of the animacy (size)
preferences for either objects or texforms was computed as the absolute
value of animals vs. object betas (big vs. small object betas) for each voxel,
averaged across voxels. These estimates were computed separately for
original images and texforms in each section and in each participant. See
SI Appendix.

Conjunction Analysis. Conjunction voxels were defined as those that elicited
the same category preference (e.g., animals) regardless of the location of the
image in the visual field (i.e., the upper visual field or the lower visual field) in
response to recognizable images (i.e., the original images). Conjunction
voxels were defined separately within each subject (SI Appendix, Fig. S13). To
calculate the portion of retained voxels, we divided the number of voxels
in this conjunction mask by the total number of visually active voxels in
occipitotemporal cortex in each subject. Map correlations were then per-
formed in each subject within these conjunction voxels.

Representational Similarity Analysis. Multivoxel patterns were extracted for
each of the four main conditions (animals/objects × big/small) at each level of
classifiability (levels 1–6), yielding 24 conditions. Given that each voxel is
treated as a separate dimension in this analysis, we considered only voxels
where recognizable images yielded a split-half reliability value above zero
(SI Appendix, Fig. S16). Next, the correlation distance between neural pat-
terns within these voxels was computed separately for texforms and original
images for each participant and was averaged for the group visualization of
the RDM.

Predictive Modeling Approach. To compare how well different models (i.e.,
low-level feature models, CNN features, and behavioral ratings) could predict
the neural RDMs, we usedweighted representational similarity analysis (RSA),
a predictive modeling procedure (51). First, for each model, features were
extracted from each image in the set and were averaged by classifiability
group into a 24-condition × numFeature matrix (see SI Appendix for more
details on feature extraction). Next, each feature was converted from a 24 ×
1 vector into a vectorized RDM (276 × 1), in which the 276 values correspond
to the squared Euclidean distance between all possible pairs of 24 condi-
tions. Here, vectorized RDMs reflect only the values in the upper triangle of
the matrix, excluding the diagonal. Using nonnegative least squares re-
gression (lsqnonneg in Matlab 2015a), we modeled the brain-vectorized
RDM as a weighted combinations of these feature-vectorized RDMs, with
a leave-one-condition-out cross-validation procedure. In each iteration,
one of the 24 conditions was dropped from both the brain and feature
data, removing 23 cells from the 276 vector (e.g., dropping condition
1 removes the distances between conditions 1 and 2, between conditions
1 and 3, between conditions 1 and 4, and so forth). The fitted model
weights were then used to predict the distance to these held-out points. A
predicted RDM was compiled over all cross-validation iterations in which
the two predictions for the same dissimilarities pairs were averaged (e.g.,
the distances from conditions 1 and 2 and from conditions 2 and 1) to make
it symmetric. The goodness-of-prediction was assessed by correlating the
predicted vectorized RDM with each subject’s neural vectorized RDM. This
procedure was employed for all different feature models. Finally, the noise
ceiling of the neural data was computed using the RSA toolbox (52)
reflecting the degree to which an individual subject’s RDM could predict
the group’s RDM.
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